\begin{tabbing} prior{-}state($f$;${\it base}$;$X$;$e$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if $e$ $\in_{b}$ prior($X$)\+ \\[0ex]then $f$(prior{-}state($f$;${\it base}$;$X$;prior($X$)($e$)),$X$(prior($X$)($e$))) \\[0ex]else ${\it base}$ \\[0ex]fi \\[0ex] \-\\[0ex]{\em clarification:} \\[0ex] \\[0ex]es{-}local{-}prior{-}state\=\{i:l\}\+ \\[0ex](${\it es}$; $f$; ${\it base}$; $X$; $e$) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if $e$ $\in_{b}$ es{-}prior{-}interface\{i:l\}(${\it es}$; $X$)\+ \\[0ex]then \=$f$\+ \\[0ex](es{-}local{-}prior{-}state\=\{i:l\}\+ \\[0ex](${\it es}$; $f$; ${\it base}$; $X$; es{-}prior{-}interface\{i:l\}(${\it es}$; $X$)($e$)) \-\\[0ex],$X$(es{-}prior{-}interface\=\{i:l\}\+ \\[0ex](${\it es}$; $X$)($e$))) \-\-\\[0ex]else ${\it base}$ \\[0ex]fi \-\\[0ex]\emph{(recursive)} \end{tabbing}